Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370617

RESUMO

The role of splicing dysregulation in cancer is underscored by splicing factor mutations; however, its impact in the absence of such rare mutations is poorly understood. To reveal complex patient subtypes and putative regulators of pathogenic splicing in Acute Myeloid Leukemia (AML), we developed a new approach called OncoSplice. Among diverse new subtypes, OncoSplice identified a biphasic poor prognosis signature that partially phenocopies U2AF1-mutant splicing, impacting thousands of genes in over 40% of adult and pediatric AML cases. U2AF1-like splicing co-opted a healthy circadian splicing program, was stable over time and induced a leukemia stem cell (LSC) program. Pharmacological inhibition of the implicated U2AF1-like splicing regulator, PRMT5, rescued leukemia mis-splicing and inhibited leukemic cell growth. Genetic deletion of IRAK4, a common target of U2AF1-like and PRMT5 treated cells, blocked leukemia development in xenograft models and induced differentiation. These analyses reveal a new prognostic alternative-splicing mechanism in malignancy, independent of splicing-factor mutations.

2.
Exp Hematol Oncol ; 12(1): 60, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422676

RESUMO

Dysregulation of the innate immune system and inflammatory-related pathways has been implicated in hematopoietic defects in the bone marrow microenvironment and associated with aging, clonal hematopoiesis, myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). As the innate immune system and its pathway regulators have been implicated in the pathogenesis of MDS/AML, novel approaches targeting these pathways have shown promising results. Variability in expression of Toll like receptors (TLRs), abnormal levels of MyD88 and subsequent activation of NF-κß, dysregulated IL1-receptor associated kinases (IRAK), alterations in TGF-ß and SMAD signaling, high levels of S100A8/A9 have all been implicated in pathogenesis of MDS/AML. In this review we not only discuss the interplay of various innate immune pathways in MDS pathogenesis but also focus on potential therapeutic targets from recent clinical trials including the use of monoclonal antibodies and small molecule inhibitors against these pathways.

3.
Leuk Lymphoma ; 64(11): 1742-1751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37467070

RESUMO

Aberrant overexpression of Interleukin-8 (IL8) has been reported in Myelodysplastic Syndromes (MDS), Acute Myeloid Leukemia (AML), Myeloproliferative Neoplasms (MPNs) and other myeloid malignancies. IL8 (CXCL8) is a CXC chemokine that is secreted by aberrant hematopoietic stem and progenitors as well as other cells in the tumor microenvironment. IL8 can bind to CXCR1/CXCR2 receptors and activate oncogenic signaling pathways, and also increase the recruitment of myeloid derived suppressor cells to the tumor microenvironment. IL8/CXCR1/2 overexpression has been associated with poorer prognosis in MDS and AML and increased bone marrow fibrosis in Myelofibrosis. Preclinical studies have demonstrated benefit of inhibiting the IL8/CXCR1/2 pathways via restricting the growth of leukemic stem cells as well as normalizing the immunosuppressive microenvironment in tumors. Targeting the IL8-CXCR1/2 pathway is a potential therapeutic strategy in myeloid neoplasms and is being evaluated with small molecule inhibitors as well as monoclonal antibodies in ongoing clinical trials. We review the role of IL8 signaling pathway in myeloid cancers and discuss future directions on therapeutic targeting of IL8 in these diseases.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Mielofibrose Primária , Humanos , Interleucina-8 , Transtornos Mieloproliferativos/genética , Leucemia Mieloide Aguda/genética , Microambiente Tumoral
4.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34551979

RESUMO

Reduced succinate dehydrogenase (SDH) activity resulting in adverse succinate accumulation was previously considered relevant only in 0.05 to 0.5% of kidney cancers associated with germline SDH mutations. Here, we sought to examine a broader role for SDH loss in kidney cancer pathogenesis/progression. We report that underexpression of SDH subunits resulting in accumulation of oncogenic succinate is a common feature in clear cell renal cell carcinoma (ccRCC) (∼80% of all kidney cancers), with a marked adverse impact on survival in ccRCC patients (n = 516). We show that SDH down-regulation is a critical brake in the TCA cycle during ccRCC pathogenesis and progression. In exploring mechanisms of SDH down-regulation in ccRCC, we report that Von Hippel-Lindau loss-induced hypoxia-inducible factor-dependent up-regulation of miR-210 causes direct inhibition of the SDHD transcript. Moreover, shallow deletion of SDHB occurs in ∼20% of ccRCC. We then demonstrate that SDH loss-induced succinate accumulation contributes to adverse loss of 5-hydroxymethylcytosine, gain of 5-methylcytosine, and enhanced invasiveness in ccRCC via inhibition of ten-eleven translocation (TET)-2 activity. Intriguingly, binding affinity between the catalytic domain of recombinant TET-2 and succinate was found to be very low, suggesting that the mechanism of succinate-induced attenuation of TET-2 activity is likely via product inhibition rather than competitive inhibition. Finally, exogenous ascorbic acid, a TET-activating demethylating agent, led to reversal of the above oncogenic effects of succinate in ccRCC cells. Collectively, our study demonstrates that functional SDH deficiency is a common adverse feature of ccRCC and not just limited to the kidney cancers associated with germline SDH mutations.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Succinato Desidrogenase/metabolismo , 5-Metilcitosina/química , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Mutação , Invasividade Neoplásica , Prognóstico , Succinato Desidrogenase/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
5.
Blood Cancer J ; 11(9): 157, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548471

RESUMO

The BCL2-inhibitor, Venetoclax (VEN), has shown significant anti-leukemic efficacy in combination with the DNMT-inhibitor, Azacytidine (AZA). To explore the mechanisms underlying the selective sensitivity of mutant leukemia cells to VEN and AZA, we used cell-based isogenic models containing a common leukemia-associated mutation in the epigenetic regulator ASXL1. KBM5 cells with CRISPR/Cas9-mediated correction of the ASXL1G710X mutation showed reduced leukemic growth, increased myeloid differentiation, and decreased HOXA and BCL2 gene expression in vitro compared to uncorrected KBM5 cells. Increased expression of the anti-apoptotic gene, BCL2, was also observed in bone marrow CD34+ cells from ASXL1 mutant MDS patients compared to CD34+ cells from wild-type MDS cases. ATAC-sequencing demonstrated open chromatin at the BCL2 promoter in the ASXL1 mutant KBM5 cells. BH3 profiling demonstrated increased dependence of mutant cells on BCL2. Upon treatment with VEN, mutant cells demonstrated increased growth inhibition. In addition, genome-wide methylome analysis of primary MDS samples and isogenic cell lines demonstrated increased gene-body methylation in ASXL1 mutant cells, with consequently increased sensitivity to AZA. These data mechanistically link the common leukemia-associated mutation ASXL1 to enhanced sensitivity to VEN and AZA via epigenetic upregulation of BCL2 expression and widespread alterations in DNA methylation.


Assuntos
Antineoplásicos/farmacologia , Azacitidina/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas Repressoras/genética , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Mutação/efeitos dos fármacos , Mutação Puntual/efeitos dos fármacos
6.
Leuk Lymphoma ; 61(10): 2453-2465, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32578476

RESUMO

Thrombocytopenia remains a challenge in myeloid malignancies, needing safer and more effective therapies. JNJ-26366821, a pegylated synthetic peptide thrombopoietin (TPO) mimetic not homologous to endogenous TPO, has an in-vitro EC50 of 0.2 ng/mL for the TPO receptor and dose dependently elevates platelets in volunteers. We demonstrate that JNJ-26366821 increases megakaryocytic differentiation and megakaryocytic colony formation in healthy controls and samples from myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). JNJ-26366821 had no effect on proliferation of malignant myeloid cell lines at doses up to 1000 ng/mL and malignant patient-derived mononuclear cells showed no increased cell growth or leukemic colony formation capacity at concentrations between 0.2 ng/mL and 10 ng/mL. Furthermore, JNJ-26366821 did not enhance in-vivo engraftment of leukemic cells in an AML xenotransplantation murine model. Our results show that JNJ-26366821 stimulates megakaryopoiesis without causing proliferation of the malignant myeloid clones in MDS/AML and provides the rationale for clinical testing of JNJ-26366821 in myeloid malignancies.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Animais , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Síndromes Mielodisplásicas/tratamento farmacológico , Receptores de Trombopoetina , Trombopoetina/farmacologia
7.
J Clin Invest ; 128(12): 5479-5488, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30252677

RESUMO

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Transcriptomic analysis of stem and progenitor populations in MDS and AML demonstrated overexpression of STAT3 that was validated in an independent cohort. STAT3 overexpression was predictive of a shorter survival and worse clinical features in a large MDS cohort. High STAT3 expression signature in MDS CD34+ cells was similar to known preleukemic gene signatures. Functionally, STAT3 inhibition by a clinical, antisense oligonucleotide, AZD9150, led to reduced viability and increased apoptosis in leukemic cell lines. AZD9150 was rapidly incorporated by primary MDS/AML stem and progenitor cells and led to increased hematopoietic differentiation. STAT3 knockdown also impaired leukemic growth in vivo and led to decreased expression of MCL1 and other oncogenic genes in malignant cells. These studies demonstrate that STAT3 is an adverse prognostic factor in MDS/AML and provide a preclinical rationale for studies using AZD9150 in these diseases.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Proteínas de Neoplasias , Células-Tronco Neoplásicas , Oligonucleotídeos/farmacologia , Fator de Transcrição STAT3 , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Leuk Lymphoma ; 59(9): 2068-2074, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29164994

RESUMO

Leukemia is characterized by selective overgrowth of malignant hematopoietic stem cells (HSC's) that interfere with HSC differentiation. Cytoreductive chemotherapy can kill rapidly dividing cancerous cells but cannot eradicate the malignant HSC pool leading to relapses. Leukemic stem cells have several dysregulated pathways and the Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) pathway are prominent among them. STAT3 is an important transcription factor that regulates cell growth, proliferation, and inhibits apoptosis. High STAT3 expression in leukemia has been associated with an increased risk for relapse and decreased overall survival. Multiple strategies for interfering with STAT3 activity in leukemic cells include inhibition of STAT3 phosphorylation, interfering with STAT3 interactions, preventing nuclear transfer, inhibiting transcription and causing interference in STAT: DNA binding. A better understanding of key interactions and upstream mediators of STAT3 activity will help facilitate the development of effective cancer therapies and may result in durable remissions.


Assuntos
Proliferação de Células/genética , Regulação Leucêmica da Expressão Gênica/genética , Leucemia/genética , Fator de Transcrição STAT3/genética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Leucemia/patologia , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
9.
Cancer Res ; 77(18): 4846-4857, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684528

RESUMO

The bone marrow microenvironment influences malignant hematopoiesis, but how it promotes leukemogenesis has not been elucidated. In addition, the role of the bone marrow stroma in regulating clinical responses to DNA methyltransferase inhibitors (DNMTi) is also poorly understood. In this study, we conducted a DNA methylome analysis of bone marrow-derived stromal cells from myelodysplastic syndrome (MDS) patients and observed widespread aberrant cytosine hypermethylation occurring preferentially outside CpG islands. Stroma derived from 5-azacytidine-treated patients lacked aberrant methylation and DNMTi treatment of primary MDS stroma enhanced its ability to support erythroid differentiation. An integrative expression analysis revealed that the WNT pathway antagonist FRZB was aberrantly hypermethylated and underexpressed in MDS stroma. This result was confirmed in an independent set of sorted, primary MDS-derived mesenchymal cells. We documented a WNT/ß-catenin activation signature in CD34+ cells from advanced cases of MDS, where it associated with adverse prognosis. Constitutive activation of ß-catenin in hematopoietic cells yielded lethal myeloid disease in a NUP98-HOXD13 mouse model of MDS, confirming its role in disease progression. Our results define novel epigenetic changes in the bone marrow microenvironment, which lead to ß-catenin activation and disease progression of MDS. Cancer Res; 77(18); 4846-57. ©2017 AACR.


Assuntos
Epigênese Genética , Células-Tronco Mesenquimais/patologia , Síndromes Mielodisplásicas/patologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Ilhas de CpG , Metilação de DNA , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteínas de Fusão Oncogênica/genética , Células Tumorais Cultivadas
10.
Cancer Res ; 76(16): 4841-4849, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287719

RESUMO

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) suppress normal hematopoietic activity in part by enabling a pathogenic inflammatory milieu in the bone marrow. In this report, we show that elevation of angiopoietin-1 in myelodysplastic CD34(+) stem-like cells is associated with higher risk disease and reduced overall survival in MDS and AML patients. Increased angiopoietin-1 expression was associated with a transcriptomic signature similar to known MDS/AML stem-like cell profiles. In seeking a small-molecule inhibitor of this pathway, we discovered and validated pexmetinib (ARRY-614), an inhibitor of the angiopoietin-1 receptor Tie-2, which was also found to inhibit the proinflammatory kinase p38 MAPK (which is overactivated in MDS). Pexmetinib inhibited leukemic proliferation, prevented activation of downstream effector kinases, and abrogated the effects of TNFα on healthy hematopoietic stem cells. Notably, treatment of primary MDS specimens with this compound stimulated hematopoiesis. Our results provide preclinical proof of concept for pexmetinib as a Tie-2/p38 MAPK dual inhibitor applicable to the treatment of MDS/AML. Cancer Res; 76(16); 4841-9. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Indazóis/farmacologia , Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/patologia , Receptor TIE-2/antagonistas & inibidores , Ureia/análogos & derivados , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Angiopoietina-1/metabolismo , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Modelos de Riscos Proporcionais , Ureia/farmacologia
11.
Blood ; 125(20): 3144-52, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25810490

RESUMO

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Interleucina-8/metabolismo , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicas/metabolismo , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Interleucina-8/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Camundongos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Receptores de Interleucina-8B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Res ; 71(9): 3225-35, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21521802

RESUMO

Rhabdoid tumors (RT) are aggressive pediatric malignancies with poor prognosis. INI1/hSNF5 is a component of the chromatin remodeling SWI/SNF complex and a tumor suppressor deleted in RT. Previous microarray studies indicated that reintroduction of INI1/hSNF5 into RT cells leads to repression of a high degree of mitotic genes including Aurora Kinase A (Aurora A, STK6). Here, we found that INI1/SNF5 represses Aurora A transcription in a cell-type-specific manner. INI1-mediated repression was observed in RT and normal cells but not in non-RT cell lines. Chromatin immunoprecipitation (ChIP) assay indicated that INI1/hSNF5 associates with Aurora A promoter in RT and normal cells but not in non-RT cells. Real-time PCR and immunohistochemical analyses of primary human and mouse RTs harboring mutations in INI1/hSNF5 gene indicated that Aurora A was overexpressed/derepressed in these tumor cells, confirming that INI1/hSNF5 represses Aurora A in vivo. Knockdown of Aurora A impaired cell growth, induced mitotic arrest and aberrant nuclear division leading to decreased survival, and increased cell death and caspase 3/7-mediated apoptosis in RT cells (but not in normal cells). These results indicated that Aurora A is a direct downstream target of INI1/hSNF5-mediated repression in RT cells and that loss of INI1/hSNF5 leads to aberrant overexpression of Aurora A in these tumors, which is required for their survival. We propose that a high degree of Aurora A expression may play a role in aggressive behavior of RTs and that targeting expression or activity of this gene is a novel therapeutic strategy for these tumors.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tumor Rabdoide/enzimologia , Fatores de Transcrição/metabolismo , Animais , Apoptose/fisiologia , Aurora Quinase A , Aurora Quinases , Caspase 3/metabolismo , Caspase 7/metabolismo , Processos de Crescimento Celular , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/biossíntese , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Células Jurkat , Camundongos , Mitose/fisiologia , Terapia de Alvo Molecular , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Proteína SMARCB1 , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transfecção , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...